Design, Development, Dynamic Analysis, and Control of a Pipe Crawling Robot

نویسندگان

  • Amir H. Heidari
  • Mehran Mehrandezh
  • Homayoun Najjaran
  • Raman Paranjape
چکیده

Well functioning water networks are essential to the sustainability of a community. Large transmission and distribution water mains are often the most sensitive components of these networks since their failure can be catastrophic. Furthermore, due to the high cost of these pipes, the system does not usually provide redundancy to enable decommission for maintenance and rehabilitation. Hence, failure of suchwater mains often carries severe consequences including loss of service, severe damages and water contamination. Aging water mains often suffer from corrosion, tuberculation or excessive leakage. These problems can affect water quality and decrease hydraulic capacity of the mains contributing to water loss. In some cases, the main may be structurally weak and prone to breakage. Prevention and/or early detection of such catastrophic failures need a comprehensive assessment of pipe condition. A proactive inspection approach is critical to the condition assessment as well as cost-effective repair and renewal of water mains. Regular cyclic inspections can provide information on the physical conditions of the pipes and on the rates of material deterioration. Nondestructive/non-intrusive technologies for evaluating pipe condition are essential tools for the early detection. However, more research is required to adapt existing technologies to the unique circumstances of large water mains that cannot be taken off service. In this context, a robotic pipe crawler as an example of underwater robotic vehicles is designed to carry pipe inspection instruments including Nondestructive Testing (NDT) sensors used for inspection of in-service water mains of different materials. The robot can also provide real-time visual information about the interior surface of the pipe. The visual information and NDT data are synergistically used to make a more reliable decision about the condition of the pipe. The on-board sensors would serve two purposes, namely (1) provide information for navigation and control of the robot, and (2) collect inspection data that can be post-processed. The proposed system has the following features:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توسعه یک مدل سه بعدی روبات ماهی و مقایسه آزمایشگاهی نتایج

Biomimetic underwater vehicle design has attracted the attention of researchers for various reasons such as ocean investigation, marine environmental protection, exploring fish behaviors and detecting the leakage of oil pipe lines. Fish and other aquatic animals have good maneuverability and trajectory following capability. They also efficiently stabilize themselves in currents and surges leave...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Dynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators

In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010